A new initiative uses Indigenous insights to amplify soil’s ability to absorb CO₂
Quick Summary
- Maya Almaraz, and former Director Ben Houlton discuss their work to accelerate soil's ability to absorb atmospheric Co2. to combat climate change.
By Adrienna Day
Benjamin Z. Houlton and others at the Working Lands Innovation Center (WLIC) are confident they can make this happen. His team is exploring ways of accelerating soil’s natural ability to absorb atmospheric carbon dioxide, essentially making the ground a sponge for the stuff. That in turn could boost crop yields by as much as 29 percent, Houlton says, because plants rely upon that greenhouse gas to grow. He calls the process “carbon capture with benefits.”
We’re still a ways from it happening on a large scale, but researchers from the University of California-Davis, Cornell University, and other institutions are testing the idea by spreading pulverized rock on 100 acres of farmland in the Golden State and six acres in New York. They plan to publish findings later this year. “There are estimates that we could get 4 billion tons of CO₂ removed from the air each year if you put these kinds of rocks on our global croplands, which is about 11 percent of the Earth’s surface,” he says. That could create new financial markets for farmers, ranchers, and Indigenous people, with carbon offset credits they could then sell.
Maya Almaraz, an ecologist, environmental scientist, and WLIC project manager: Before we can implement these practices on a large scale, we need more information about how much carbon these soil amendments can sequester across a variety of conditions. Soil amendments like rock dust have been shown to sequester carbon, but we’ve also been testing biochar and compost. We’re testing amendments on a variety of different cropping systems, like alfalfa, corn, olives, and almonds. We’re also testing them on a dairy site and on rangelands.